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Abstract 

We study systematically and exhibit the Lorentz symmetry of the Bethe-Salpeter equation 
in the light-like case for two scalar quarks of different masses interacting via the exchange 
of a scalar photon. We develop a new approach for solving the eigenvalue problem of the 
equation for the general case (not only the light-like). Our method permits accurate 
analytic expressions for the spectrum and the wave functions. 

1. Introduction 

The Bethe-Salpeter (BS) equation (Salpeter & Bethe, 1951) has been 
used extensively in the last years as a theoretical physics laboratory. In 
particular it has been used as a field theoretical model for studying the 
scattering amplitude and its symmetries. This led to the discovery of im- 
portant new dynamical mechanisms and new concepts like that of  Regge 
poles in relativistic field theory, Lorentz poles and daughter trajectories.t 

The symmetries of the BS equation are well known for the vacuum-like, 
time-like and the space-like case. In the present paper we investigate system- 
atically the symmetry for the light-like case, before and after the Wick 
rotation, i.e. in the original Minkowski and in Euclidean space. The eigen- 
value problem is then reduced into a partial differential equation which 
exhibits the symmetry explicitly again. With polar coordinates our equation 
is further transformed into a one-dimensional ordinary differential equation. 

t A general survey of the theory of the Bethe-Salpeter equation is given by Nakanishi 
(1969). 
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This equation can be transformed to another differential equation known in 
the mathematical literature as Heun's equation (Heun, 1889). The same 
approach when applied in the other cases, time-like, vacuum-like and 
space-like, leads to corresponding known one-dimensional differential 
equations which are also of Heun's type. 

Analytic expressions of the eigenvalues of the general Heun's equation 
do not exist. Also little is known for the eigenfunctions of this equation 
(Bateman Manuscript Project, 1954). For this reason, up to now the eigen- 
values of the BS equation and the Regge trajectories have been calculated 
mainly computationally (Chung & Snider, 1967). Such calculations, even 
when they are of great precision, hide many interesting features of the 
problem. 

In our method the one-dimensional equation is transformed into an 
equivalent 'Schr6dinger' equation. Then the potential is replaced by an 
approximate one, for which the resulting equation can be solved exactly. 
In this way we obtain analytic expressions in general very precise, for the 
eigenvalues and the eigenfunctions. For special values of the relative mass 
difference and/or the binding energy the original potential coincides with 
the approximate one, and we get exact solutions including all the known 
ones. 

We hope that our approach will offer a more transparent picture of many 
qualitative and quantitative features of the spectrum, Regge trajectories and 
wave functions of the BS equation. 

2. Symmetries and Differential Equations 

We consider the Bethe-Salpeter equation of two scalar quarks which 
form a bound state via the exchange of a scalar particle (Wick-Cutkosky 
model (Wick, 1954; Cutkosky, 1954)). Let m~, Pim i = 1, 2 be the masses 
and the 4-momenta of the quarks 1 and 2. We write 

mj = m(1 + A) 

m2 = m(1 - A) (2.1) 

and we introduce the total momentum p of the bound s t a t e  (p2  = s ) ,  and 
the relative momentum q of the quarks by 

p~ = q + �89 + A ) p  

P2 = - q  + �89 - A ) p  (2.2) 

Then the BS equation takes the form (Wick, 1954) 

{[q + �89 + A)p] 2 - (1 + A)Z}{[q - �89 - A)p] z - (1 - A) z} ~(q ,p)  

ih f d4 k 
- rr 2 (q - ~ _  tL 2 qS(k,p) (2.3) 
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where/~ is the mass o f  the exchanged particle, and the mass units were 
chosen such that  m = 1. We make a stereographic projection of  the four- 
dimensional space into the surface of  a sphere in five-dimensional space, 
i.e. we introduce new variables (Cutkosky, 1954; Delbourgo et al., 1966) 

2qsqt, / z = 0 ,  1, 2, 3 7]t, q52 _ q2 , 

q5 2 -I- q 2  

7]5 q52  _ q 2  

7]i 7] i = 7]0 2 - -  711 2 - -  7]2 2 - -  7]2 2 - -  7]5 2 = - - I  (2.4) 
where 

q s = [ 1 - 4  ( 1 -  AZ)] ~/2 (2.5) 

In the 7] variables equat ion (2.3) is put  in a compact  form 

i),(1 - A 2) f d 5 7]' 3(7]{ 7]" + 1) ~(na',P) 
[qsa _ �88 7t(7]up) _ 4-~z- , ]  1 + 7], 7]' /z= 

' +2qsz--(l+7]s)(1 +7]s') 

i =  0 . . . .  3, 5 (2.6) 

where 

7-t(7]i,p) = (1 + 7]5) -3 qb(q,p) (2.7) 

Pi' = [Pu( 1 - Az), 2q5 A ] (2.8) 

The metric in the five-dimensional scalar products  of  equat ion (2.6) is 

g00 = - g l  1 = - - g 2 z  = --g33 = -g55 = 1 

Equat ion (2.3) for/z  = 0 can be easily t ransformed to a differential equation, 
after the Wick rotat ion.  With the use of  the identity 

a 2 1 
Oqo, Oq~, (q - k) 2 = -47rE 3(4) (q - k) (2.9) 

the integral equation (2.3) becomes 

(D{[q + �89 + A)p] 2 + (1 + A) z} 
• {[q - �89 - A)p] 2 + (1 - A) 2} - 4~) qb(q,p) = 0 (2.10) 

With a change of  variables (Kyriakopoulos,  1968) 

zi = 7]iz, z =Ps ,  i =  1, . . . ,  5 (2.11) 

and 

Y(7]up) = [1 - 1 ~z4 (p ~ 'z,)2] (1 + ~ )  - 3qb(q,p) (2.12) 
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equation (2.10) becomes 

{ [ 1 - 4 ~ ( p , ' z O 2 ] [ z Z o ~ f i 2 - ( z , ~ ) z - 3 Z , ~ z  - 2 ] 
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1 -(s /4)  
• Y(z~,p) = 0 (2.13) 

The above equation is the BS equation in differential form. 

2.1. Light-Like Case 

In a coordinate system in which the total energy-momentum vector is 
p# = (co, 0,0, co), equation (2.6) reads 

{1 - [al(~70 - ~73) - A~75] 2} ~(n~,P) 

ih ( d s ' ' '~ 

J 4rr 2 /z 2 
1 +~7,'~' + ~ ( 1  + Vs)(1 + ~Ts') (2.1.1) 

zq5-  

where 
o o ~ ( 1  - A z)  

am - -  2 (2.1.2) 

For/z ~ 0 the symmetry group of equation (2.1.1) is obviously the E 2. We 
want to investigate the group of invariance of  the equation for ~ = 0. In 
this case the symmetry group will be the subgroup of SO(4,1) which leaves 
invariant the expression 

61 
~75 - 3 (~7o - "q3) (2.1.3) 

Let L~s, i , j  = 0, . . . ,  3, 5 be the generators of the group SO(4,1). Consider- 
ing infinitesimal transformations we find that the expression (2.1.3) remains 
invariant if the generators appear only in the combinations 

L13-L01,  L23-L02,  Lt5 A L , L2s A L , -a-~ O1 -am 02 

L35+Lo5 A L  , and LIZ - a l  o3 

By taking linear combinations of them we get the operators 

J l 2  = L I 2  

J23 = Lls -- 2-~1 (L13 + Lol) 

A 
J31 --- L25 - ~ a l  (L23 + Lo2) 

Jol =L25 - -  (L23 +Lo2) + ~ - (L23  -Lo2)  
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/1 a! 
do2 = -L15 + ~ 1  (L13 + Loi) - ~- (LI3 - Lol) 

al 
Jo3 = - L o 3  + ~-(L35 + Los) (2.1.4) 

These satisfy the Lie Algebra o f  the group SO(3,1). So the group SO(3,1) 
is the group of  invariance o f  equat ion (2.1.1.) f o r / ~ = 0 .  We arrive at the 
same result with the rotat ion 

/ 1 (  2a12~ A ( 1  2a12~ 

,, A 
~3 = ~5 - ~ (~o + ~3) 

n al 
~75 = ~Ts - ] - 0 7 o  - ~73) 

## ## 

~h = ~71, 772 = ~72 (2.1.5) 

For  Pv = (o J, 0, 0, o J) equat ion (2.13) becomes 

{(1 ~ 

X [Z 2 ~2 0 2 

The above equation, in the variables z;' defined by equations (2.11) and 
(2.1.5), becomes 

0 2 I 
r : _  (::~z~,)2_ 3z~z~._ 2 _ A2~2/z,2Q Y(z~,) =0 (2.1.7) [- Ozp 2 1 

We easily see that  equat ion (2.1.7) is invariant with respect to SO(4) 
transformations.-~ 

Introducing polar  coordinates 

Z 5 = ZCOSZI~  1 

z4 = z sinz91 COS%9' 2 

z 3 = z sin~91 sin~92 COS~ 3 

z2 = z s in#l  sin~72 sin z73 cos 

z l = z sin ~71 sin z92 sin z~3 sin ~ (2.1.8) 

the partial  differential opera tor  of  equation (2.1.7) takes the form (for 
simplicity we have dropped the primes) 

0 2 0 L 2 -- K 2 0 2 [ 0 X 2 0 2 - 4x 
zZ---tz'ff~z~)Ozi 2 - 3zi0~zl = (1 - x )~-2x2 fix 1 - x 2 

x = cos 01 (2.1.9) 

I" After this work had been completed we were informed that the SO(4) symmetry of 
the Wick rotated BS equation, withp, light-like has also been established by Seto (1968). 
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where 
a2 

L 2 -- K 2 = - -  § 2 cot '1~ 2 0 ~  
0'~2 2 

+ ~ [ s i n v q 3  ~ 3  _ o .  sin2 &30~2J 

is the Casimir operator of our symmetry group. 
Separating variables 

Y(z,) = F(z) Y.,m(Z~2, 03. eft) G.(v~,) 
where Y.lm is a 4-dimensional spherical harmonic satisfying 

( L2 - K2) Y,,m = ( n2 - 1) Yn,,, 

equation (2.1.7) is reduced to the ordinary differential equation 

] ox 1 - x  2 1--A2x2 2 G. (x )=0  

The boundary conditions are]" 

" + i F  2 O ]Gn(X) x= 1 (1 - x2)-2- [1 - n - ( 1  - x  )Ox = 0  

(1 - x 2 ) - - ~  [1 - n §  - x  2) Gn(X)x__ 1 -  = 0  (2.1.14) 

The function F(z) is not determined from equation (2.1.7). Since z = q5 = 
const, it will be determined from the normalization of the BS wave function. 

In the BS literature one usually finds the function g,(x) 
n + l  

g,(x) = (1 - x 2) 2 G,(x) (2.1.15) 

In the g,(x) variable, equation (2.1.13) becomes 

A 1)]g,,(x) = 0 (2.1.16) [(1-x2)~-~x22+2(n-1)X~x 1 - A 2 x  2 - n ( n -  

with the boundary conditions 

[n + ( 1 -  x)-fx]g,(x) = =0 

I n - ( 1 - x ) ~ x ] g , ( x ) x = _  1 = 0  (2.1.17) 

With the change of variable 

y = 1 - x 2 (2.1.18) 

1" Equations (2.1.14) have been obtained in a way similar to that followed by Kummer 
(1964). 

(2.1.10) 

(2.1.11) 

(2.1.12) 

(2.1.13) 
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equation (2.1.16) becomes 

d [ �89 1 - n \  d 

[n(n - 1)/4]yy_~ 2"- iJ [-fi ~Z (ATZ-- 1 - ~ - 2 ~ -  [A + (A 2 - 1)n(n - 1)]/4A2} gn(y) = 0 + (2.1.19) 

known in the mathematical literature as Heun's equation (Heun, 1889). 
Its solutions, satisfying the boundary condition (2.1.17) are called Heun's 
functions. Unfortunately little is known about these functions and in 
particular it is not possible in general to find an analytic expression for 
the eigenvalues ~. For this reason in the next section we shall approach 
the eigenvalue problem by a new method starting directly from equation 
(2.1.13). 

2.2. Time-L ike  Case 

F o r p ,  time-like equation (2.13), in the rest f ramep,  = (V/(s),0), becomes 

1 Z2 t ~v/(at 2 _ A 2) z4  -~- %~(at2 _ A 2) z5 

a / p ( 1 -  
' =~ / I~  7 4 7 s  ] (2.2.1) 

This, with the orthogonal transformation 

�9 . a t  A 
tz 4 = i C,(aZ _ A2 ) z4 + ~r 2 _ Az)z5  

n . A a t  
Z$ = - - Z C ( a 2  _ /t2) z~ C ( a ?  - A2) z5 

" " " (2.2.2) Z 1 ~ Z D Z 2 ~ Z2~ Z 3 ~ Z 3 

gives 

- " " 2  - z ~ '  - 3 z ~ '  - 2 
OZ i 

_ a ] r(z'[) = o 
1 - (s/4) + [(s/4) - A z] (z4Z/z "z) 

(2.2.3) 

It is clear that for the time-like case we have S0(4) symmetry both, 
in the original Minkowski space and after the Wick rotation in Euclidean 
space. 
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Following similar steps as in the light-like case we get 

0 n a 1 
(1 - x 2 )  . 4 ~  - 4x 

ox Ox 1 -- X 2 

1 - (s/4) + [(s/4) - A2lx 2 G,(x) = 0 

with x = (z4/z) and the same boundary conditions.? 

(2.2.4) 

3. Solutions of  the Eigenvalue Equations 

As mentioned in the previous section we shall solve the eigenvalue 
problem with a new approach. 

3.1. Light-Like Region 
We start from 

HGv(x) = v 2 G~(x) (3.1.1) 

where H is the self-adjoint differential operator 

d2 z d ~(1 - x 2) 
H = (1 - x2) z-dx z - 4x(1 - x  )~-~-  2(�89 - x z) -~ i - -  Az-~ (3.1.2) 

This can be considered as an eigenvalue equation for v 2, which generalizes 
the spectrum of the Casimir operator L 2 - K z + 1 of  the symmetry group. 
For  v = n an integer number, equation (3.1.2) reduces to equation (2.6). 

With the change of variables 

l + x  
z l n l  - x '  X 

o~v(x) = V ( 1  - x 2) G . ( x )  

equation (3.1.1) is put in the form 

[-- ~ 2  "~- V (X) ] o.)(X) = -122 t.D(X), (3.1.3) 

where 

V(X) 1 + (1 - A2)sh2x (3.1.4) 

This is a one-dimensional 'Schr6dinger' equation for a particle of  mass �89 
moving in the 'potential' V(X ). In Fig. 1 we have plotted V(X ) for h positive 
and various values of A. The 'energy levels' correspond to the spectrum 
- v  2 which defines the Regge poles. It is clear that for )t sufficiently large, 
i.e. for strong attractive potential, there will always exist discrete levels. 
When v becomes an integer n, which can happen only for special values of  A, 
the Regge poles materialize as physical bound states. 

F 
t For p~ space-like we are led again to equation (2.2.4). 
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We now proceed to solve the 'Schr6dinger '  equation.  First  we approxi-  
mate  V(X ) by 

A 
Vapp(X) 1 + sh2~(1 - A2) X (3.1.5) 

F o r  d = 0, and  A = 1 this potent ial  coincides with the exact one. As seen 
f rom Fig. 1 the approx imat ion  is very good  for  0 < d < 0.75 and  becomes 
better  and  better  as A -+ 0. Equat ion  (3.1.3), with V(X ) replaced by Vapp(X) 
can be solved exactly. We  find'~ 

t~ = ch~v,(1 _ A2) X ' ~ + 1 -- 1 

F - 2 '  V'(1 - A2) ~ ,  } ; - sh2v ' (1  - A2)X ~: = O, 2, 4 . . . .  

Uapp(X)=~sh~/ (1-  A2)x K--1 - v  K - 1  3 
I 

2- ' ~ / ( 1 - d  2 ) 2 '2 '  

-,9h2%/(1 - A 2 ) X ] ,  = 1, 3, 5 . . . .  (3.1.6) 

and  

v = V'(1 - d 2) (o - K). (3.1.7) 

r is the number  of  nodes of  the wave functions. 
Fo r  physical bound  states (v = n = integer) equat ion (3.1.7) gives the 

eigenvalue spectrum 

A,.~ = [n + rV'(1  - d2)] [n + (~c + 1)V'(1 - / 1 2 ) ]  (3.1.8) 

In  the limit/12 _+ 1, V(X) of  equat ion (3.1.4) is t ransformed into a square 
well potent ial  o f  depth -A  and range tending to infinity with 1/(1 - A 2 ) .  
Alternatively,  with a change in the scale, the range can be kept  at  a fixed 
value. Fo r  example,  with a new variable X' = (7r/2)(X/e) and an equivalent 
scaling 4E2/rr 2 in the mass,  the range o f  the potent ial  is kept  at  rr/2. When  r 
defined by 

4 
= In V'(1 - / 1 2 )  

is large the approx imat ion  becomes very good.  The  spectrum in this region 
is given as a solution of  the equations 

V'(A - v2)tg E a/(A - v 2) = v (3.1.9a) 

for  even number  o f  nodes, and  

~V/(~ - -  1 '2) cotg E ~/(A - v 2) = - v  (3.1.9b) 

for  odd  numbers  o f  nodes. 

t See, for instance, Landau & Lifshitz (1958). 
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--2 -1 1 2 --2 --1 

S 
-X 

I 2 

-2 -I 1 2 - 2  - 1  

/,.o.= 

I 2 

S 
Figure 1.--The 'potential' for typical values of A. The solid lines refer to the exact 
potential 

V(X) 1 + (1 - A 2) sh2x 
and:the dashed lines to 

A Vapp(x) = 
1 + sh2a/(1 - A2)X 

For A = 0 we have V(X) = Vapp(X) and for A = 0.25 the difference V(X) - V.pp(X) is not 
visible. 

For  physical bound  states (v = n = integer) equation (3.1.9), as A ~ 1, 
gives the eigenvalue spectrum 

17 2 

u (1 + ~)2 

A"=n2 + { in ~ _ ~ } 2 ,  (3.1.10) 

where K = 0, 1, 2 . . . . .  

3.2. Time-Like  Bound S ta te  Region 

Consider the time-like bound  states for which 0 < s < 4m z, s = (2m - Eb) 2, 
where Eb is the binding energy. The time-like and the light-like eigenvalue 
problems are mathematically equivalent. Indeed the former  can be reduced 
to the latter, i.e. to  equation (3.1.1) o f  the light-like case by the simple 
substitution 

Az ( s / 4 )  - A 2 ( 3 . 2 . 1 )  
a - +  a o .  1-(s/4) ' .  - +  2 1 .  (s/4)- 1 
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and we have 
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We consider two regions. 

(i) 4 A 2 < s < 4  
In  this region 

0 > Ao~ ~> - ~  and 1 - A2 < '~ea ~< co 

The  solutions and  the spectrum o f  the eigenvalue equat ion are obta ined by 
substituting (3.2.1) into (3.1.6) and (3.1.7). We find 

,<l{  ]rn 1_ 12 

t~ = 0, 1, 2 . . . .  (3.2.2) 

As we have discussed previously, equat ion (3.2.2) is a very good  approx ima-  
t ion for  0 < IAoql ~< 3, which means  4A 2 < s < 3 + A 2. F o r s  = 4A2, equat ion 
(3.2.2) gives us the exact spectrum. 

In  the nonrelativistic limit (EU2) -+ 0, the 'potent ia l '  takes the fo rm 

V (x) - c  

2A I [1  - A 2 \  zr)~ 
V'[(1 - Az) Eb] a r c t g ~ t - - - - ~ b  ) ~ V'[(1 -- A2)Eb] 

~o~(X) = exp ( - v  Ix l) (3.2.3) 
~r A 

2 ( [ ( 1  - A2) 

This corresponds  to the nonrelativistic limit o f  the normal  solutions 
( K = 0 ) .  For  the abnorma l  ones ( K # 0 ) ,  we have A ~ � 8 8  (Wick, 1954; 
Cutkosky,  1954). 

(ii) 0 < s < 4A 2 
In  this region we have 

A 
A < A e q < l _ d 2  , and  l > A 2 ~ > d 2 q > 0  

For  s --- 4A 2 we have the exact solution, as we ment ion  previously. In general 
our  approx imate  solutions, very similar to the light-like ones, are extremely 
good  w h e n s  m 4A 2, and as s ~ 0 they tend smooth ly  to the solution o f  the 
light-like case. 

3.3 The Space -L ike  Region  

For  -oo < s < 0 we have 0 < A~q < A, and 1 > 2 2  > A 2. We obtain  

1 1 
[~/(47~ + 1 - d 2) - (2t~ + 1) i f (1 - A2)] (3.3.1) 

vaPP 2 a/[1 - (s/4)1 

a good  approx imat ion  when 0 < d < 0.75 and [/12 _ (s/4)]/[1 - (s/4)] < �89 
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As A --> l we have the asymptotic form 

1 - (s/4) 8 (1 + •)2 In 16 -_ (s/4)!]-2t '12 (3.3.2) 

We remark finally that as s -+ - ~ ,  equation (3.3.2) gives the asymptotic 
form of v for all A. 

Note  Added in Proo f  

After completing this paper related work done by Seto (1969) was pointed 
to us. In reference to this we add the following remarks: 

(1) We treat the problem of symmetry in a different way. 
(2) In our approach the radial equation is attached directly as a Regge 

trajectory eigenvalue problem. (Usually the eigenvalue is the coupling 
constant.) In this way we are led to a perturbation series in A~q = 
(s/4 - Aa)/(s/4 - 1) instead of (s/4 - A2)/(A 2 - 1) in Nakanishi (1965) and 

Seto (1969). For example, for the Regge trajectories we have v = ~. ~iA2~. 
/ = 0  

Our expansion parameter A2q is smaller than one in the whole half of  the 
complex s-plane, Res < 2(1 + A 2) while in the Nakanishi-Seto case, the 
expansion parameter is smaller than one only inside the circle I s -  4A21 < 
4(1 - A2). 

The constant terms, which give the exact position of the trajectories at 
s = 4A 2, are the same in both expansions of  course. Also the coefficients of 
the first-order terms, which give the slope of the trajectories at s = 4A 2, 
are the same 

2 2Vo( 2~2 + 4XVo + 2x + 2Vo -- ,~) ~- 0(A4q) b, 2 i.,0 2 + 
A#qA~q (2K + 2v o + 3)(2K + 2vo + 1) (2~c + 2Vo - 1) 

v0 = [~/(a + 1/4) - x - 1/2] 

(3) We give also good approximative expressions in closed form (non- 
perturbative), for both the eigenvalues and the eigenfunctions. 
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